HISTORIA Y EVOLUCION TARJETAS MADRE EVOLUCION A MEDIDA DEL TIEMPO EVOLUCION A MEDIDA DEL TIEMPO DE LAS TARJETAS MADRE Antecedentes La historia de la tarjeta madre, como se conoce actualmente inicia en 1947 cuando William Shockley, Walter Brattain y John Bardeen, científicos de los laboratorios Bell, muestran su invento, el transistor amplificador de punto-contacto, iniciando con esto el desarrollo de la miniaturización de circuitos electrónicos; este es el invento que eventualmente dividiría la historia de las computadoras de la primera y segunda generación. Otro invento que contribuyó de manera decisiva a la creación de la tarjeta madre fue el de G. W. Dummer, un experto en radar del Radar Real Británico, que en 1952 presentó una proposición sobre la utilización de un bloque de material sólido que puede ser utilizado para conectar componentes electrónicos sin cables de conexión. Fue hasta 1961 cuando Fairchild Semiconductor anuncia el primer circuito integrado comercialmente disponible, iniciando con esto la competencia por la alta integración de componentes en espacios cada vez más reducidos; la miniaturización, y con esto la búsqueda de la computadora en una pastilla. Con estos inventos se comienza a trabajar en la computadora en una tarjeta. Evolución Mycro 1 En 1975 se fabrica la primera microcomputadora "de tarjeta única" en Oslo, Noruega en una empresa llamada Norsk Data Industri. Contaba con un microprocesador Intel 8080 y utilizaba el sistema operativo MYCROP, creado por la misma empresa. Esta computadora fue sucedida por la Mycron 3, que ya utilizaba CP/M; la Mycron 1000 que contaba con un microprocesador Zilog Z80 y utilizaba MP/M; y finalmente en 1980 llega al mercado la Mycron 2000, que fue la primera en albergar un microprocesador Intel 8086, y utilizaba inicialmente el sistema operativo CP/M-86 y eventualmente el MP/M-86. KIM-1 En 1976 MOS Technology presenta la computadora en una sola tarjeta KIM-1. Cuenta con un microprocesador 6501/02* a 1 MHz; 1 kilobyte en RAM, ROM, teclado hexagecimal, pantalla numérica con LEDs, 15 puertos bidireccionales de entrada / salida y una interfaz para casete compacto (casete de audio). Esta computadora fue vendida armada, aunque carecía de fuente de poder. La KIM-1 fue producida hasta 1981, convirtiéndose en el primer producto de cómputo de Cómmodore. XT En 1981 IBM lanzó al mercado la primera computadora personal comercialmente exitosa, la IBM 5150, desde entonces el paso de la evolución que ha llevado este mundo de la Informática, ha sido vertiginoso, siempre buscando mayor velocidad y capacidad, al mismo tiempo que se reducían los costes de fabricación y por ende, los precios. Con la aparición del primer PC, sale al mercado la primera placa base estándar, la XT, que fuera substituida en poco tiempo, en 1984, apareciendo la AT, que son las siglas en inglés para Tecnología Avanzada, Advanced Technology. Cuyo estándar y configuración siguió vigente hasta principios del presente siglo (XXI), comenzando su declinación en el 2000, frente al exitoso estándar ATX. Las diferencias principales entre estos dos estándares es la arquitectura, ya que el XT posee una arquitectura a 8 bits, mientras que el AT llega a los 16. Estas tarjetas usualmente están equipadas con 8 ranuras ISA de 8 bits, 4 hileras de 9 zócalos para expandir la memoria pastilla por pastilla y una hilera por vez, para un total máximo de 1 megabyte en RAM. En cuanto a la memoria, esta consta de 4 hileras de 9 zócalos que daban cabida a 1 megabyte en total. Cada hilera recibe 9 pastillas de 32 kilobytes, utilizando una de ellas para paridad y únicamente funcionaba si toda la hilera estaba con sus circuitos correctamente insertados. Todavía no se inventaban las tarjetas de ampliación de memoria. De línea tenía cuando menos 3 ranuras ISA utilizadas, una para el controlador de disco duro, otra para la controladora de disquete y otra más para el controlador de video que habitualmente contaba también con un conector centronics para la impresora. Algunos modelos incorporaban una cuarta tarjeta para el puerto serial. Estas tarjetas, en su versión básica, únicamente contaban con microprocesador, el zócalo para el coprocesador matemático, que era un circuito independiente; zócalos para la ampliación de memoria, un conector DIN 5 para el teclado, las ranuras ISA de 8 bits, un conector de alimentación y la circuitería y pastillería necesaria para el funcionamiento de la computadora y carecía de funcionalidad útil por sí misma, sin tarjetas de expansión. AT El AT, basado en el estándar IBM PC-AT, fue estándar absoluto durante años, desde los primeros microprocesadores Intel 80286 hasta los primeros Pentium II y equivalentes incluidos. Estas tarjetas madre, en sus primeras versiones son de diseño y características elementales; carecen de accesorios integrados limitándose únicamente a los circuitos, componentes y pastillas básicos para su funcionamiento, al igual que las XT. Usualmente cuentan únicamente con un conector del teclado DIN de tipo ancho, así como algunas ranuras tipo ISA de 8 y / o 16 bits y en el caso de los modelos más recientes, algunas EISA, VESA y PCI en las que se tenían que insertar las tarjetas de expansión para controlar discos duros, puertos, sonido, etc. Durante este período casi todos los accesorios para computadora venían acompañados de una tarjeta controladora que había que instalar y configurar manualmente, ya que la tecnología de estas tarjetas madre no aportaba funciones para conectar y funcionar (Plug & Play), lo que hacía que la instalación, o al menos la configuración de estos dispositivos tuviera que ser realizada por personal calificado que supiera lidiar con los limitados recursos que ofrecía la placa base. Estas carencias y limitaciones son las que motivaron que eventualmente se crearan tecnologías de conectar y funcionar así como buses externos de alta velocidad, como lo son el USB o el IEEE1394, para dar cabida a la creciente disponibilidad de accesorios y demanda de recursos. Las últimas generaciones de tarjetas madre tipo AT llegaron al mercado integrando la circuitería de control para 4 discos duros, 2 platinas de disquete, sonido de 8 y hasta 128 bits, 2 puertos seriales y 1 paralelo, al menos 2 conectores USB, puerto de video AGP a 64 bits con memoria de video compartida con la RAM del sistema configurable desde 4 hasta 64 megabytes, así como módem a 56Kbps y red ethernet a 10/100 megabits; con lo cual la mayoría de estos modelos ya no requerían de tarjetas de expansión para funcionar a toda su capacidad saliendo de la caja, ya que inclusive algunas traían montado el microprocesador y únicamente se equipaban con una ranura PCI y/o una ISA. ATX y variantes El formato ATX, promovido por INTEL e introducido al mercado en 1996 comenzó su historia con una serie de debates sobre su utilidad debido principalmente al requerimiento de nuevos diseños de fuente de poder y gabinete. El cumplimiento de los estándares ATX permite la colocación de la UCP de forma que no moleste en el posicionamiento de las tarjetas de expansión, por largas que estas sean y está colocada al lado de la fuente de alimentación para recibir aire fresco del ventilador de esta. Se descubren exteriormente porque tiene más conectores, los cuales están agrupados y los conectores de teclado y ratón son tipo PS/2. Para 1997, con la llegada al mercado del AGP y el USB, estas tecnologías se incorporaron rápidamente en este estándar. Debido las amplias características del ATX salieron al mercado diversas alternativas basadas en el mismo estándar, como el micro ATX, que es una versión reducida en tamaño, y el mini ITX, una versión todavía más compacta y de características de expansión limitadas. Otros formatos relativamente comunes basados en el estándar ATX son el LPX y el NLX. El LPX es de tamaño similar a las Baby AT con la particularidad de que las ranuras para las tarjetas se encuentran fuera de la placa base, en un conector especial quedando paralelas a la placa base. El NLX se sujeta a la carcasa mediante un mecanismo de fácil apertura, que permite un cambio rápido de la placa. También sus ranuras de expansión están dispuestas en una placa independiente conectada a la placa base. Tarjeta madre Micro ATX para slot 1 Otra clasificación que se puede hacer de las placas base es atendiendo al zócalo donde va colocado el procesador, pudiendo ser socket 4 o 5 para los primeros Pentium, también conocidos como Pentium Clasico, socket 7 para Pentium MMX, AMD K-6, Cyrix, el socket super7 igual que el anterior pero con bus de 100 Mhz, el socket 8 para Pentium PRO, el slot Uno para la familia del Pentium II y los primeros Pentium III, el slot 2 para el Xeon. Otra característica que diferencia las placas base es la circuitería, también conocida como Chipset, que es el conjunto de circuitos integrados o pastillas que se encargan de enlazar y gestionar los distintos buses de datos que hay en la placa base. La calidad de la circuitería condiciona la de la tarjeta madre y normalmente le da el nombre. El primer conjunto de pastillas que se introdujo con el procesador Pentium y se denominaba tipo VX, al que le fueron sucediendo distintos modelos según iban apareciendo nuevos procesadores Pentium. Los de 440 de Intel, en su placa 440 LX, fue la primera con una velocidad frontal de 66MHz, y el 440 BX con una velocidad de 100 Mhz. También existen 440 GX y 450 NX para procesador XEON. LINEA DE TIEMPO DE LA MEMORIA RAM 1. 1. Flash Memory (1988) Este tipo de memoria se utiliza principalmente para almacenamiento, pero actualmente Windows Vista nos la opción de utilizarla también como memoria RAM, a continuación las características: Con capacidades de almacenamiento de 64MB hasta 32GB, basadas en NOR y Manda velocidad de transferencia 0 MB/s, - 30 MB/s.FPM-RAM (1990) Velocidades de acceso, 60 ns. Velocidades de bus de 66 Mhz. Características: el siguiente acceso a un dato de memoria va a ser en la misma fila que el anterior, con lo que se ahorra tiempo en ese caso. Velocidad de transferencia 200 MB/sEDO-RAM (Extended Data Output -1994) Velocidad de acceso 70, 60 ó 50 ns. Velocidad de transferencia 320 MB/s Característica: permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos). 2. 2. BEDO-RAM (1997) Característica: lee los datos en ráfagas, lo que significa que una vez que se accede a un dato de una posición determinada de memoria se leen los tres siguientes datos en un solo ciclo de reloj por cada uno de ellos, reduciendo los tiempos de espera del procesador. Velocidad de bus 66 MHz. Velocidad de transferencia 533 MB/s - 1066 MB/s Velocidad de transferencia 533 MB/s - 1066 MB/sSDR SDRAM (Memoria RAM dinámica de acceso síncrono de tasa de datos simple - 1997)Característica: se conecta al reloj del sistema y está diseñada para ser capaz de leer o escribir a un ciclo de reloj por acceso, es decir, sin estados de espera intermediosVelocodad de acceso 25 y 10 ns PC66 (1997) La velocidad de bus 66 MHz, temporización de 15 ns Velocidad de transferencia 533 MB/s. PC100 (1998) temporización de 8 ns y ofrece tasas de transferencia de hasta PC133 (1999) 3. 3. La velocidad de bus de memoria es de 133 MHz, Temporización de 7,5 ns Velocidad de transferencia de hasta 1066 MB/s.RDRAM (1999)También llamadas Rambus, se caracterizan por utilizar dos canales en vez de uno con 184 pines y un bus de 16-bit RAMBUS PC600 (1999) Velocidad de transferencia 2.12 GB/s 266MHz RAMBUS PC700 Fecha de introducción: 1999 Velocidad de transferencia 1.42 GB/s por canal, que hacen en total 2.84 GB/s @ 356 MHz RAMBUS PC800 Fecha de introducción: 1999 Velocidad de transferencia 1.6 GB/s por canal, que hacen en total 3.2 GB/s @ 400 MHz 4. 4. ESDRAM (1999)Velocidad de transferencia de la información: Hasta 1.6 GB/s @ 133MHz y hasta 3.2 GB/s @ 150 MHzRDRAM (1999)También llamadas Rambus, se caracterizan por utilizar dos canales en vez de uno con 184 pines y un bus de 16-bit RAMBUS PC600 (1999) Velocidad de transferencia 2.12 GB/s 266MHz RAMBUS PC700 Fecha de introducción: 1999 Velocidad de transferencia 1.42 GB/s por canal, que hacen en total 2.84 GB/s @ 356 MHz RAMBUS PC800 Fecha de introducción: 1999 Velocidad de transferencia 1.6 GB/s por canal, que hacen en total 3.2 GB/s @ 400 MHzESDRAM (1999)Velocidad de transferencia de la información: Hasta 1.6 GB/s @ 133MHz y hasta 3.2 GB/s @ 150 MHz 5. 5. DDR-SDRAM (Son módulos compuestos por memorias síncronas - 2001) Característica: que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDRs soportan una capacidad máxima de 1 GB. PC1600 – DDR200(2001) Velocidad de transferencia1600 MB/s PC2100 – DDR266(2002) Velocidad de transferencia 2133 MB/s PC2100 – DDR266 (2003) frecuencia de 333 MHz con un bus de transferencia 2.7 GB/s. PC3200 – DDR400 (2004) Frecuencia de 400 MHz bus de 200MHz tasa de transferencia 3.2 GB/s. PC4200 – DDR533 (2004) Frecuencia 533MHz bus de 133MHz transferencia 4.2 GB/s. PC4800 – DDR600 (2004) frecuencia de 600 MHz bus de 150MHz transferencia 4.8 GB/s. 6. 6. PC5300 – DDR667 (2004) frecuencia de 667 MHz bus de 166MHz transferencia 5.3 GB/s.PC6400 – DDR800 (2004) frecuencia de 800 MHz bus de 200MHz transferencia máxima de 6.4 GB/s.DDR3 – 800 (2004) frecuencia de 800 MHz bus de 100MHz transferencia 6.4 GB/s.DDR3 – 1066 (2007) frecuencia de 1066MHz bus de 133MHz transferencia 8.53 GB/s.DDR3 – 1333( 2007) velocidades de transferencia de 10.667 GB/s bus 1333 MHzDDR3 – 1600( 2007) Transferencia 12.80 GB/s bus 1600 MHzDDR3 – 1800 (Agosto de 2007) 14.40 GB/s @ 1800 MHz 7. 7. DDR3 – 2000( Marzo de 2008) transferencia16.0 GB/s @ 2000 M DISCO DURO Evolución de Disco Duro IBM RAMAC35 En 1957, se introdujo como un componente de IBM RAMAC la primera unidad de discos duro350. Requirió 50 discos de 24 pulgadas para guardar cinco megabytes (millón bytes, se abrevió MB) de datos y costó bruscamente US$35.000 por año o arrendarlo a US$7.000 por megabyte anual. fue el primer ordenador comercial que utilizaba disco duro de cabeza móvil (unidad de disco magnético) como almacenamiento secundario. IBM lo lanzó el 4 de septiembre de 1956. RAMAC eran las iniciales en inglés de "Sistema de Contabilidad con Memoria de Acceso Aleatorio" ("Random Access Memory ACcounting System Su diseño estuvo motivado por la necesidad de sustituir el fichero de tarjetas perforadas utilizado por la mayoría de las oficinas de la época. El primer RAMAC destinado a ser usado en la industria del automóvil estadounidense fue instalado en la Chrysler's MOPAR División en 1957. Sustituyó a un gigantesco fichero que era parte del sistema de procesamiento para el control de inventario y pedidos de piezas de MOPAR. El 305 fue uno de los últimos ordenadores de tubo de vacío construídos por IBM. El sistema de disco IBM 350 almacenaba cinco millones de caracteres de siete bits (aproximadamente 4,2 MiB). Tenía cincuenta discos de veinticuatro pulgadas de diámetro. Dos brazos independientes se desplazaban verticalmente seleccionar un disco y horizontalmente para seleccionar una pista de grabación, todo para control de servomecanismos. El tiempo medio de posicionamiento en un registro era de seiscientos milisegundos. En la década de 1950 se añadieron varios modelos mejorados. El ordenador IBM RAMAC 305 con almacenamiento en disco 350 tenía un coste en "leasing" de 3.200 dólares mensuales en dólares de 1957, equivalente a un precio de compra de unos 160.000 dólares. Se construyeron más de 1.000 unidades. La producción terminó en 1961, el RAMAC pasa ser obsoleto en 1962 con el lanzamiento del IBM 1401 y retirado del mercado en 1969. El modelo 1301 1962 IBM introdujo un nuevo modelo, el 1301, con una capacidad de 28 MB y una velocidad de transferencia y una densidad de área 10 veces mayor que el RAMAC 305. La distancia entre los cabezales y la superficie del disco había descendido desde 20,32 µm a 6,35 µm. A partir del año 1962, muchos fabricantes comenzaron a vender discos duros como el 1301. La Unidad de almacenamiento en disco de IBM, con su mayor capacidad, flexibilidad y velocidad, hemos ampliado la capacidad operativa de la serie 7000 de los ordenadores de IBM (7070, 7094, 7080 y 7090). El 1301 aumentó el rendimiento de los sistemas grandes para muchos tipos de empleos, y con su organización única de datos, el 1301 contribuyó de manera significativa a la vez que 7000 servidores en realidad podría calcular. Utilizado en combinación con la serie 7000, el 1301 había muchos de los mismos y las características físicas generales de funcionamiento como cuando se utiliza con el IBM 1410 Data Processing System. Estas características incluyen: el concepto del cilindro (verticalmente alineados de lectura / escritura cabezas, una a una superficie del disco, para proporcionar la lectura y escritura de información en temas relacionados con el disco correspondiente y para eliminar la necesidad de acceso para el movimiento vertical); longitud de registro flexibles (diferentes registros de longitud podría ser almacenados en el archivo, aumentando enormemente la capacidad de almacenamiento real); y selectiva frente (números de registro fueron asignados por el usuario para una mayor eficacia en muchos puestos de trabajo, las direcciones no tienen que ser consecutivos, secuencial o numérico). El 1301 de los discos giran a 1.800 rpm. El 1301 proporcionó el 50 pistas por pulgada y grabación de hasta 520 bits por pulgada de pista (gracias a una reducción media en la cabeza-a-distancia de la superficie de 800 a 250 micro pulgadas). Como resultado, la capacidad de almacenamiento por pulgada cuadrada de la superficie se incrementó 13 veces más de lo que había sido con la tecnología de IBM RAMAC de 1956. El modelo 2310 1965 En 1965, IBM lanzó el modelo 2310, cuya notable característica era ser un elemento de almacenamiento desmontable (el primer disco flexible). En abril de 1967, IBM anunció una expansión de cuatro modos de sistema de 1130. Nuevas características para el escritorio de computadora del tamaño de IBM más pequeño a la vez, incluyó la capacidad de leer la información de cinco discos magnéticos al mismo tiempo. Anteriormente, sólo un equipo autónomo de disco (primer plano) estaba disponible. Sin embargo, en 1967, hasta cuatro discos adicionales (a la derecha, parte trasera) se podría agregar. Cada uno puede almacenar hasta un millón de caracteres de información. El 2314 1966 El 2314, lanzado en 1966, tenía cabezales de lectura de ferrita (óxido de hierro). Anunció un año después de la System /360 en abril de 1965, el IBM 2314 proporcionó ocho unidades de disco y una de repuesto, junto con una unidad de control en una misma instalación. Un paquete nuevo disco con 11 discos duplicó el número de superficies de almacenamiento de más de los disponibles en el paquete de la primera de disco extraíble. La densidad de grabación el incremento de la capacidad de almacenamiento de 29,2 millones de bytes por paquete o 233 millones de bytes en las ocho instalaciones de carga. El tiempo de acceso y la latencia de la 2314 era la misma que la de más edad de IBM 2311, pero el 2314 ofrece el doble de la velocidad de datos de 310.000 bytes por segundo. El 2314 también fue interesante porque era cuatro veces menor en el precio por megabyte de almacenamiento. Winchester 3340 1973 En 1973, IBM lanzó el Winchester 3340, un disco duro cuyo cabezal de lectura estaba separado de la superficie a través de una fina capa de aire de tan sólo 0,43 µm de espesor. Mejoró su capacidad en comparación con aquella del RAMAC, como también su tamaño y peso, lo cual hizo que este disco se convirtiera el nuevo estándar de los dispositivos de almacenamiento de acceso directo. Al disco duro de 30 MB de capacidad se le dio el apodo de 30-30, y así se convirtió en el "Winchester" (como el famoso rifle 30-30). Tras un esfuerzo de desarrollo que comenzó en el verano de 1969, la unidad de disco IBM 3340 fue presentado en marzo de 1973, con una tecnología avanzada de disco conocido como "Winchester". * Los primeros 3.340 envíos a los clientes se inició en noviembre de 1973. El 3340 aparece una más pequeña, más ligera lectura / escritura de la cabeza que podía montar más cerca de la superficie del disco - en una película de ambiente 18 millonésimas de pulgada de grosor - con una carga de menos de 20 gramos. Baja el archivo de disco Winchester cabeza de estructura de costes deslizante, hizo posible el uso de dos cabezas por superficie, reducción de la longitud de la carrera a la mitad. Los discos, el eje del disco y rodamientos, el transporte y la cabeza asambleas brazo se incorporaron en un cartucho sellado, desmontable, llamado 3348 de IBM Data Module. Una densidad de pista de 300 pistas por pulgada y un tiempo de acceso de 25 milisegundos se han alcanzado. El 3340 ofrece la disponibilidad de los jefes fija opcional, que proporcionan un tiempo de acceso promedio de sólo cinco milisegundos. Había tres tipos de módulos de datos: 35 megabytes, 70 megabytes, y 70 megabytes de los cuales 0,5 megabytes eran accesibles con la cabeza fija. Dos a cuatro unidades de 3340 podrían estar vinculadas a la modelo de procesador IBM System/370 115 - que había sido anunciada simultáneamente con el 3340 - proporcionando una capacidad de almacenamiento de hasta 280 millones de bytes Seagate 1980 El primer disco duro de 5,25" (cinco-coma-veinticinco pulgadas), desarrollado por la compañía Seagate, se lanzó en 1980.La revolución de la computadora personal a comienzos de 1980 cambió todo, es la introducción de los primeros discos duros pequeños. Eran discos de 5.25 pulgadas los que manejaban de 5 a 10 MB de almacenamiento- el equivalente de 2.500 a 5.000 páginas de tecleo de información- en un aparato del tamaño de la caja de un zapato pequeño. Al tiempo se consideró que una capacidad de almacenamiento de 10 MB era demasiado grande para una llamada computadora "personal". Los primeros PCS usaron discos flexibles trasladables como aparatos de almacenamiento casi exclusivamente. El término "disco blando" con precisión se refiere a los primeros discos para PC de 8 y 5.25 pulgadas que tuvieron éxito. Los discos internos de hoy, más pequeños, se construyen 3.5 pulgadas de forma similar a los anteriores, pero se albergan en un casco de plástico rígido, que es más durable que el techado flexible de los discos más grande MFM Años más tarde, se inventó el primer disco duro para ordenadores personales. Usando el método de codificación de MFM, tenía una capacidad de 40MB y una velocidad de transferencia de datos de 625 Kbps. Una versión posterior del interfaz ST506 trasladó al método de codificación de RLL, facilitando una aumentada capacidad de almacenaje y velocidad de procesamiento. Las unidades de disco utilizado por el modelo I, II, III, 4, 4D, 4P, 16, 12, 16B, 16BHD, 6000 y 6000HD son principalmente ST506 unidades de tipo. El ST506 Seagate es un disco que tenía una interfaz de MFM (Modified Frequency Modulation) que se ha repetido en docenas de unidades diferentes a lo largo de los años. Con el tiempo, que la interfaz ha tomado el nombre de la unidad ST506 original. La unidad ST506 es una unidad de capacidad muy baja para los estándares de hoy pero la interfaz había suficiente flexibilidad para permitir un mayor crecimiento. (La interfaz ST506 también fue llamada la "S" interface por algunos fabricantes por un tiempo que no quería hablar de la ST506, un modelo de unidad competitiors, pero la "S" nombre ya no era utilizado por la década de 1980. En esa la fecha, las unidades IDE SCSI y había comenzado a apoderarse del mercado de almacenamiento. Discos para computadoras de escritorio Por 1987 unidades de discos duros de 3.5 pulgadas empezaron a aparecer. Éstas unidades pequeñas pesan como una libra y son del tamaño de una agenda. Estos fueron integrados dentro de computadores de escritorio y más tarde se incorporaron a los primeros en de verdad llamados computadoras portátiles (laptops) -peso promedio bajo 12 libras. La unidad de 3.5 pulgadas rápidamente volvió a ser la norma para los computadores de escritorio y sistemas portátiles que requerían menos que 500 MB capacidad. Altura también se encoge con la introducción del disco de 1 pulgada de alto, dispositivos de 'bajo perfil'. Así como la forma de 3.5 pulgadas ganaba aceptación, todavía una forma más pequeña, de 2,5 pulgadas, poco a poco apareció en la escena. No sorprende que la marcha a la miniaturización no se detuvo con 2.5 pulgadas. Surgimiento de varios modelos Alrededor de 1992 varios modelos 1.8 pulgadas aparecieron, peso sólo unas onzas y entrega capacidades de hasta 40 MB. Igualmente aparecieron con formato de 1.3 pulgadas, del tamaño de una fosforera. Factores de forma más pequeños por supuesto, no eran necesariamente mejor que los más grandes. Desde su introducción, el disco duro se ha vuelto la forma más común de almacenamiento en masa para computadoras personales. Fabricantes han hecho grandes avances en capacidad, tamaño y ejecución. Hoy, el formato de 3.5 pulgadas, es capaz de manejar y acceder a millones de datos (gigabyte GB) mientras el computador esta accediendo a las aplicaciones multimedia, gráficos de alta calidad, gestión de redes, y aplicaciones de las comunicaciones. Y, según el tamaño maneja no sólo el equivalente de cientos de miles de páginas de información, sino que también recupera un dato o artículo determinado en sólo unas milésimas de segundo. Aún más, con el transcurrir del tiempo cada vez es más barato la unidad de disco. Almacenamiento masivo 1995-1999 El disco duro más pequeño que puede encontrarse en ésta época es el de 4 GB, mientras que el más grande es de 15 GB. Podría decirse que los discos duros de cualquier tamaño, permiten instalar Windows, Office y un programa de contabilidad, y aún sobrará capacidad para, digamos, unas 50.000 cartas y varios millones de apuntes bancarios. Un caso distinto es el del usuario doméstico; en teoría, apenas necesitaría un poco más de capacidad que el usuario ofimático, En cuanto a los profesionales del CAD o la edición de vídeo, la capacidad que siguen necesitando sigue siendo bastante elevada, aunque en este caso el tamaño no debe ser una obsesión; sencillamente, en estas aplicaciones el disco duro es sólo una herramienta de trabajo, nunca de archivo. Para eso están los magneto-ópticos, el Jaz o las omnipresentes grabadoras de CD. MK4058GSX 2000 Lanzado por Toshiba. De 400 GB. Consecución de una densidad superficial de almacenamiento de 477Mbit/mm2 (308Gbspi). El MK4058GSX logra una densidad superficial de almacenamiento de 477Mbit/mm2 como resultado de mejorar la cabeza de lectura/escritura y la capa magnética. Con el mismo diseño de dos platos que el diseño actual del disco de 320GB de Toshiba, el nuevo modelo ofrece una capacidad de 400GB, la mayor capacidad obtenida hasta la fecha, mientras conserva el espesor de 9,5 mm de su antecesor. 2. 2dB de reducción en el ruido acústico durante la búsqueda de datos. Toshiba ha concentrado sus más recientes avances en la tecnología de discos duros para reducir el ruido en 2dB, suprimiéndolo a un nivel en el cual los usuarios pueden reproducir películas y música sin ninguna distracción ocasionada por el ruido durante la búsqueda de datos. 3. Mejora en la eficiencia del consumo de energía. Comparado con el MK3252GSX de 320GB, el nuevo MK4058GSX mejora la eficiencia en el consumo de energía, según se define en el estándar legal japonés, a 0,0015W/GB, una mejora del 20% SSD25D 2,5 (De Estado Solido) 2009 Este nuevo dispositivo -SSD25D asegura una alta velocidad de transmisión de datos. Transcend Information anuncia el lanzamiento de su último disco duro en estado sólido ultra rápido SATA II de 2,5’’, equipado con 64 MB de memoria caché DRAM. Ofrece una velocidad de transferencia de datos, de más de 230M/s en lectura y de 180MB/s en escritura, garantizando así rapidez en el rendimiento, sin importar el tamaño o el tipo del archivo que se quiera transmitir. Construido con memoria NAND flash, que no contiene partes móviles, SSD25D es altamente resistente, y silencioso; además, este dispositivo es prácticamente inmune a problemas mecánicos por exceso de vibración, golpes o calor. Para mayor seguridad, SSD25D integra el código ECC (Error Correction Code), que asegura una transmisión de datos precisa. La Cie Bigger Disk Extreme marca un antes y un después en cuanto al almacenamiento de datos. Ningún otro es capaz de guardar tantos contenidos: más de 625.000 canciones en MP3, 1,3 millones de fotos o hasta 425 películas en calidad DVD. Esta impresionante capacidad de 2.000 GB, impensable hasta la fecha, convierte al Bigger Disk Extreme en el disco duro perfecto para cualquier empresa. Tan útil para hacer copias de seguridad como para almacenar bases de datos, es además el compañero perfecto de los editores de vídeo. Unos profesionales que manejan toneladas de imágenes y que necesitan una gran velocidad de transferencia de datos. Potente y rápida, esta gran revolución del almacenamiento cuenta con triple interfaz USB 2.0, FireWire 400 y FireWire 800. Ofrece una velocidad de transferencia un 50% más alta que el resto de las unidades FireWire 800. En concreto, Bigger Disk Extreme alcanza los 85 megabytes por segundo. A pesar de ser el disco más grande del mundo en cuanto a capacidad, Bigger Disk Extreme ocupa sólo 8,8 cm. de alto x 27 cm. de largo y 17,3 cm de ancho. Gracias a su diseño exclusivo y compacto se puede apilar o poner en vertical sobre una base para ahorrar espacio en el escritorio. Además, el equipo incluye un cómodo ventilador inteligente que protege el disco contra el exceso de calor sin hacer apenas ruido. EL DISCO BLU-RAY tiene 12 cm de diámetro, igual que el CD y el DVD. Guardaba 25 GB por capa, por lo que Sony y Panasonichan desarrollado un nuevo índice de evaluación (i-MLSE) que permitiría ampliar un 33 % la cantidad de datos almacenados,1 desde 25 a 33,4 GB por capa.23 Funcionamiento] El disco Blu-ray hace uso de un rayo láser de color azul con una longitud de onda de 405 nanómetros, a diferencia del láser rojo utilizado en lectores de DVD, que tiene una longitud de onda de 650 nanómetros. Esto, junto con otros avances tecnológicos, permite almacenar sustancialmente más información que el DVD en un disco de las mismas dimensiones y aspecto externo.45 Blu-ray obtiene su nombre del color azul del rayo láser (blue ray significa ‘rayo azul’). La letra e de la palabra original blue fue eliminada debido a que, en algunos países, no se puede registrar para un nombre comercial una palabra común.23 Historia El DVD ofreció en su momento una alta calidad, ya que era capaz de dar una resolución de 720x480 (NTSC) o 720x576 (PAL), lo que es ampliamente superado por la capacidad de alta definición ofrecida por el Blu-ray, que es de 1920x1080 (1080p). Este último es el formato utilizado por los estudios, para archivar sus producciones, que anteriormente se convertía al formato que se quisiese exportar. Esto ya no será necesario, con lo que la industria del cine digital no tendrá que invertir esfuerzo y tiempo en el cambio de resolución de películas, lo que abaratará en menor medida y reducción de costos. 6Lector de tarjetas de memoria Lector de tarjetas de memoria moderno típico, compatible con muchos formatos comunes. Un lector de tarjetas de memoria es un dispositivo de almacenamiento de datos para acceder (leer) los datos en una tarjeta de memoria, como por ejemplo: CompactFlash (CF), Secure Digital (SD) o MultiMediaCard (MMC). Es un periférico de entrada. La mayoría de los lectores de tarjetas también ofrecen capacidad de escritura, y junto con la tarjeta, esto puede funcionar como un memoria USB o pendrive. Algunas impresoras y computadoras personales tienen un lector de tarjetas incorporado. Un lector de tarjetas múltiple se utiliza para la comunicación con más de un tipo de de tarjeta de memoria flash. Los multi-lectores de tarjetas no se han incorporado en la capacidad de memoria, pero son capaces de aceptar varios tipos y estilos de las tarjetas de memoria. El número de tarjetas de memoria compatibles varía de lector a lector y puede incluir más de veinte tipos diferentes. La cantidad de tarjetas de memoria diferentes que un multi-lector de tarjetas puede aceptar se expresa como "x-en-1", siendo "x" una figura de mérito que indica la cantidad de tipos de tarjetas de memoria aceptadas (por ejemplo: "5-en-1"). Hay tres categorías de lectores de tarjetas, según el tipo y la cantidad de las ranuras para tarjetas: 1. Lector de tarjetas único (por ejemplo 1x SD-solamente), 2. Lector de tarjetas multi (por ejemplo, 9-en-1) y 3. Lector de tarjetas en serie (por ejemplo 4x SD solamente). Algunos tipos de tarjetas de memoria con sus propias funciones de USB no necesitan el lector de tarjetas, como la tarjeta de memoria Intelligent Stick, que se puede conectar directamente a un puerto USB. La clase de dispositivo USB que utiliza es 0x08. El moderno UDMA-7, las tarjetas CompactFlash y UHS-I Secure Digital ofrecen velocidades de datos de más de 89 MBytes/seg y hasta 145 MBytes/seg,1 que requieren lectores de tarjetas de memoria capaces de velocidades de transferencia de datos USB 3.0.2 La memoria USB (Universal Serial Bus) denominado también lápiz de memoria, lápiz USB, memoria externa, pen drive o pendrive es un tipo de dispositivo de almacenamiento de datos que utiliza memoria flash para guardar datos e información.1Primera generación Las empresas Trek Technology e IBM comenzaron a vender las primeras unidades de memoria USB en el año 2000. Trek vendió un modelo bajo el nombre comercial de Thumbdrive e IBM vendió las primeras unidades en Norteamérica bajo la marca DiskOnKey, desarrolladas y fabricadas por la empresa israelí M-Systems en capacidades de 8 MB, 16 MB, 32 MB y 64 MB. Estos fueron promocionados como los «verdaderos reemplazos del disquete», y su diseño continuó hasta los 256 mis. Los modelos anteriores de este dispositivo utilizaban copias de baterías, en vez de la alimentación de la PC.2 Segunda generación Dentro de esta generación de dispositivos existe conectividad con la norma USB 2.0. Sin embargo, no usan en su totalidad la tasa de transferencia de 480 Mbit/s que soporta la especificación USB 2.0 Hi-Speed debido a las limitaciones técnicas de las memorias flash basadas en NAND. Los dispositivos más rápidos de esta generación usan un controlador de doble canal, aunque todavía están muy lejos de la tasa de transferencia posible de un disco duro de la actual generación, o el máximo rendimiento de alta velocidad USB. Las velocidades de transferencia de archivos varían considerablemente. Se afirma que las unidades rápidas típicas pueden leer a velocidades de hasta 480 Mbit/s y escribir a cerca de la mitad de esa velocidad. Esto es aproximadamente 20 veces más rápido que en los dispositivos USB 1.1, que poseen una velocidad máxima de 24 Mbit/s. Tercera generación La norma USB 3.0 ofrece tasas de cambio de datos mejoradas enormemente en comparación con su predecesor, además de compatibilidad con los puertos USB 2.0. La norma USB 3.0 fue anunciada a finales de 2009, pero los dispositivos de consumo no estuvieron disponibles hasta principios de 2010. La interfaz USB 3.0 dispone las tasas de transferencia de hasta 4,8 Gbit/s, en comparación con los 480 Mbit/s de USB 2.0. A pesar de que la interfaz USB 3.0 permite velocidades de datos muy altas de transferencia, a partir de 2011 la mayoría de las unidades USB 3.0 Flash no utilizan toda la velocidad de la interfaz USB 3.0 debido a las limitaciones de sus controladores de memoria, aunque algunos controladores de canal de memoria llegan al mercado para resolver este problema. Algunas de estas memorias almacenan hasta 256 GiB de memoria (lo cual es 1024 veces mayor al diseño inicial de M-Systems). También hay dispositivos, que aparte de su función habitual, poseen una Memoria USB como aditamento incluido, como algunos ratones ópticos inalámbricos o Memorias USB con aditamento para reconocer otros tipos de memorias (microSD, m2, etc.). En agosto de 2010, Imation anuncia el lanzamiento al mercado de la nueva línea de USB de seguridad Flash Drive Defender F200, con capacidades de 1 GiB, 2 GiB, 4 GiB, 8 GiB, 16 GiB y 32 GiB. Estas unidades de almacenamiento cuentan con un sensor biométrico ergonómico basado en un hardware que corrobora las coincidencias de las huellas dactilares de identificación, antes de permitir el acceso a la información.

TARJETAS MADRE EVOLUCION A MEDIDA DEL TIEMPO

EVOLUCION A MEDIDA DEL TIEMPO DE LAS TARJETAS MADRE

Antecedentes

La historia de la tarjeta madre, como se conoce actualmente inicia en 1947 cuando William Shockley, Walter Brattain y John Bardeen, científicos de los laboratorios Bell, muestran su invento, el transistor amplificador de punto-contacto, iniciando con esto el desarrollo de la miniaturización de circuitos electrónicos; este es el invento que eventualmente dividiría la historia de las computadoras de la primera y segunda generación.
Otro invento que contribuyó de manera decisiva a la creación de la tarjeta madre fue el de G. W. Dummer, un experto en radar del Radar Real Británico, que en 1952 presentó una proposición sobre la utilización de un bloque de material sólido que puede ser utilizado para conectar componentes electrónicos sin cables de conexión.
Fue hasta 1961 cuando Fairchild Semiconductor anuncia el primer circuito integrado comercialmente disponible, iniciando con esto la competencia por la alta integración de componentes en espacios cada vez más reducidos; la miniaturización, y con esto la búsqueda de la computadora en una pastilla.
Con estos inventos se comienza a trabajar en la computadora en una tarjeta.

Evolución

Mycro 1
En 1975 se fabrica la primera microcomputadora "de tarjeta única" en Oslo, Noruega en una empresa llamada Norsk Data Industri. Contaba con un microprocesador Intel 8080 y utilizaba el sistema operativo MYCROP, creado por la misma empresa.
Esta computadora fue sucedida por la Mycron 3, que ya utilizaba CP/M; la Mycron 1000 que contaba con un microprocesador Zilog Z80 y utilizaba MP/M; y finalmente en 1980 llega al mercado la Mycron 2000, que fue la primera en albergar un microprocesador Intel 8086, y utilizaba inicialmente el sistema operativo CP/M-86 y eventualmente el MP/M-86.

KIM-1
En 1976 MOS Technology presenta la computadora en una sola tarjeta KIM-1. Cuenta con un microprocesador 6501/02* a 1 MHz; 1 kilobyte en RAM, ROM, teclado hexagecimal, pantalla numérica con LEDs, 15 puertos bidireccionales de entrada / salida y una interfaz para casete compacto (casete de audio). Esta computadora fue vendida armada, aunque carecía de fuente de poder.
La KIM-1 fue producida hasta 1981, convirtiéndose en el primer producto de cómputo de Cómmodore.

XT
En 1981 IBM lanzó al mercado la primera computadora personal comercialmente exitosa, la IBM 5150, desde entonces el paso de la evolución que ha llevado este mundo de la Informática, ha sido vertiginoso, siempre buscando mayor velocidad y capacidad, al mismo tiempo que se reducían los costes de fabricación y por ende, los precios.
Con la aparición del primer PC, sale al mercado la primera placa base estándar, la XT, que fuera substituida en poco tiempo, en 1984, apareciendo la AT, que son las siglas en inglés para Tecnología Avanzada, Advanced Technology. Cuyo estándar y configuración siguió vigente hasta principios del presente siglo (XXI), comenzando su declinación en el 2000, frente al exitoso estándar ATX. Las diferencias principales entre estos dos estándares es la arquitectura, ya que el XT posee una arquitectura a 8 bits, mientras que el AT llega a los 16.
Estas tarjetas usualmente están equipadas con 8 ranuras ISA de 8 bits, 4 hileras de 9 zócalos para expandir la memoria pastilla por pastilla y una hilera por vez, para un total máximo de 1 megabyte en RAM.
En cuanto a la memoria, esta consta de 4 hileras de 9 zócalos que daban cabida a 1 megabyte en total. Cada hilera recibe 9 pastillas de 32 kilobytes, utilizando una de ellas para paridad y únicamente funcionaba si toda la hilera estaba con sus circuitos correctamente insertados. Todavía no se inventaban las tarjetas de ampliación de memoria.
De línea tenía cuando menos 3 ranuras ISA utilizadas, una para el controlador de disco duro, otra para la controladora de disquete y otra más para el controlador de video que habitualmente contaba también con un conector centronics para la impresora. Algunos modelos incorporaban una cuarta tarjeta para el puerto serial.
Estas tarjetas, en su versión básica, únicamente contaban con microprocesador, el zócalo para el coprocesador matemático, que era un circuito independiente; zócalos para la ampliación de memoria, un conector DIN 5 para el teclado, las ranuras ISA de 8 bits, un conector de alimentación y la circuitería y pastillería necesaria para el funcionamiento de la computadora y carecía de funcionalidad útil por sí misma, sin tarjetas de expansión.

AT
El AT, basado en el estándar IBM PC-AT, fue estándar absoluto durante años, desde los primeros microprocesadores Intel 80286 hasta los primeros Pentium II y equivalentes incluidos.
Estas tarjetas madre, en sus primeras versiones son de diseño y características elementales; carecen de accesorios integrados limitándose únicamente a los circuitos, componentes y pastillas básicos para su funcionamiento, al igual que las XT.
Usualmente cuentan únicamente con un conector del teclado DIN de tipo ancho, así como algunas ranuras tipo ISA de 8 y / o 16 bits y en el caso de los modelos más recientes, algunas EISAVESA y PCI en las que se tenían que insertar las tarjetas de expansión para controlar discos duros, puertos, sonido, etc.
Durante este período casi todos los accesorios para computadora venían acompañados de una tarjeta controladora que había que instalar y configurar manualmente, ya que la tecnología de estas tarjetas madre no aportaba funciones para conectar y funcionar (Plug & Play), lo que hacía que la instalación, o al menos la configuración de estos dispositivos tuviera que ser realizada por personal calificado que supiera lidiar con los limitados recursos que ofrecía la placa base.
Estas carencias y limitaciones son las que motivaron que eventualmente se crearan tecnologías de conectar y funcionar así como buses externos de alta velocidad, como lo son el USB o el IEEE1394, para dar cabida a la creciente disponibilidad de accesorios y demanda de recursos.
Las últimas generaciones de tarjetas madre tipo AT llegaron al mercado integrando la circuitería de control para 4 discos duros, 2 platinas de disquete, sonido de 8 y hasta 128 bits, 2 puertos seriales y 1 paralelo, al menos 2 conectores USBpuerto de video AGP a 64 bits con memoria de video compartida con la RAM del sistema configurable desde 4 hasta 64 megabytes, así como módem a 56Kbps y red ethernet a 10/100 megabits; con lo cual la mayoría de estos modelos ya no requerían de tarjetas de expansión para funcionar a toda su capacidad saliendo de la caja, ya que inclusive algunas traían montado el microprocesador y únicamente se equipaban con una ranura PCI y/o una ISA.

ATX y variantes
El formato ATX, promovido por INTEL e introducido al mercado en 1996 comenzó su historia con una serie de debates sobre su utilidad debido principalmente al requerimiento de nuevos diseños de fuente de poder y gabinete.
El cumplimiento de los estándares ATX permite la colocación de la UCP de forma que no moleste en el posicionamiento de las tarjetas de expansión, por largas que estas sean y está colocada al lado de la fuente de alimentación para recibir aire fresco del ventilador de esta. Se descubren exteriormente porque tiene más conectores, los cuales están agrupados y los conectores de teclado y ratón son tipo PS/2.
Para 1997, con la llegada al mercado del AGP y el USB, estas tecnologías se incorporaron rápidamente en este estándar.
Debido las amplias características del ATX salieron al mercado diversas alternativas basadas en el mismo estándar, como el micro ATX, que es una versión reducida en tamaño, y el mini ITX, una versión todavía más compacta y de características de expansión limitadas.
Otros formatos relativamente comunes basados en el estándar ATX son el LPX y el NLX. El LPX es de tamaño similar a las Baby AT con la particularidad de que las ranuras para las tarjetas se encuentran fuera de la placa base, en un conector especial quedando paralelas a la placa base. El NLX se sujeta a la carcasa mediante un mecanismo de fácil apertura, que permite un cambio rápido de la placa. También sus ranuras de expansión están dispuestas en una placa independiente conectada a la placa base.

Tarjeta madre Micro ATX para slot 1
Otra clasificación que se puede hacer de las placas base es atendiendo al zócalo donde va colocado el procesador, pudiendo ser socket 4 o 5 para los primeros Pentium, también conocidos como Pentium Clasico, socket 7 para Pentium MMX, AMD K-6, Cyrix, el socket super7 igual que el anterior pero con bus de 100 Mhz, el socket 8 para Pentium PRO, el slot Uno para la familia del Pentium II y los primeros Pentium III, el slot 2 para el Xeon. Otra característica que diferencia las placas base es la circuitería, también conocida como Chipset, que es el conjunto de circuitos integrados o pastillas que se encargan de enlazar y gestionar los distintos buses de datos que hay en la placa base. La calidad de la circuitería condiciona la de la tarjeta madre y normalmente le da el nombre.
El primer conjunto de pastillas que se introdujo con el procesador Pentium y se denominaba tipo VX, al que le fueron sucediendo distintos modelos según iban apareciendo nuevos procesadores Pentium. Los de 440 de Intel, en su placa 440 LX, fue la primera con una velocidad frontal de 66MHz, y el 440 BX con una velocidad de 100 Mhz. También existen 440 GX y 450 NX para procesador XEON.

LINEA DE TIEMPO DE LA MEMORIA RAM

  1. 1. Flash Memory (1988) Este tipo de memoria se utiliza principalmente para almacenamiento, pero actualmente Windows Vista nos la opción de utilizarla también como memoria RAM, a continuación las características: Con capacidades de almacenamiento de 64MB hasta 32GB, basadas en NOR y Manda velocidad de transferencia 0 MB/s, - 30 MB/s.FPM-RAM (1990) Velocidades de acceso, 60 ns. Velocidades de bus de 66 Mhz. Características: el siguiente acceso a un dato de memoria va a ser en la misma fila que el anterior, con lo que se ahorra tiempo en ese caso. Velocidad de transferencia 200 MB/sEDO-RAM (Extended Data Output -1994) Velocidad de acceso 70, 60 ó 50 ns. Velocidad de transferencia 320 MB/s Característica: permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
  2. 2. BEDO-RAM (1997) Característica: lee los datos en ráfagas, lo que significa que una vez que se accede a un dato de una posición determinada de memoria se leen los tres siguientes datos en un solo ciclo de reloj por cada uno de ellos, reduciendo los tiempos de espera del procesador. Velocidad de bus 66 MHz. Velocidad de transferencia 533 MB/s - 1066 MB/s Velocidad de transferencia 533 MB/s - 1066 MB/sSDR SDRAM (Memoria RAM dinámica de acceso síncrono de tasa de datos simple - 1997)Característica: se conecta al reloj del sistema y está diseñada para ser capaz de leer o escribir a un ciclo de reloj por acceso, es decir, sin estados de espera intermediosVelocodad de acceso 25 y 10 ns PC66 (1997) La velocidad de bus 66 MHz, temporización de 15 ns Velocidad de transferencia 533 MB/s. PC100 (1998) temporización de 8 ns y ofrece tasas de transferencia de hasta PC133 (1999)
  3. 3. La velocidad de bus de memoria es de 133 MHz, Temporización de 7,5 ns Velocidad de transferencia de hasta 1066 MB/s.RDRAM (1999)También llamadas Rambus, se caracterizan por utilizar dos canales en vez de uno con 184 pines y un bus de 16-bit RAMBUS PC600 (1999) Velocidad de transferencia 2.12 GB/s 266MHz RAMBUS PC700 Fecha de introducción: 1999 Velocidad de transferencia 1.42 GB/s por canal, que hacen en total 2.84 GB/s @ 356 MHz RAMBUS PC800 Fecha de introducción: 1999 Velocidad de transferencia 1.6 GB/s por canal, que hacen en total 3.2 GB/s @ 400 MHz
  4. 4. ESDRAM (1999)Velocidad de transferencia de la información: Hasta 1.6 GB/s @ 133MHz y hasta 3.2 GB/s @ 150 MHzRDRAM (1999)También llamadas Rambus, se caracterizan por utilizar dos canales en vez de uno con 184 pines y un bus de 16-bit RAMBUS PC600 (1999) Velocidad de transferencia 2.12 GB/s 266MHz RAMBUS PC700 Fecha de introducción: 1999 Velocidad de transferencia 1.42 GB/s por canal, que hacen en total 2.84 GB/s @ 356 MHz RAMBUS PC800 Fecha de introducción: 1999 Velocidad de transferencia 1.6 GB/s por canal, que hacen en total 3.2 GB/s @ 400 MHzESDRAM (1999)Velocidad de transferencia de la información: Hasta 1.6 GB/s @ 133MHz y hasta 3.2 GB/s @ 150 MHz
  5. 5. DDR-SDRAM (Son módulos compuestos por memorias síncronas - 2001) Característica: que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDRs soportan una capacidad máxima de 1 GB. PC1600 – DDR200(2001) Velocidad de transferencia1600 MB/s PC2100 – DDR266(2002) Velocidad de transferencia 2133 MB/s PC2100 – DDR266 (2003) frecuencia de 333 MHz con un bus de transferencia 2.7 GB/s. PC3200 – DDR400 (2004) Frecuencia de 400 MHz bus de 200MHz tasa de transferencia 3.2 GB/s. PC4200 – DDR533 (2004) Frecuencia 533MHz bus de 133MHz transferencia 4.2 GB/s. PC4800 – DDR600 (2004) frecuencia de 600 MHz bus de 150MHz transferencia 4.8 GB/s.
  6. 6. PC5300 – DDR667 (2004) frecuencia de 667 MHz bus de 166MHz transferencia 5.3 GB/s.PC6400 – DDR800 (2004) frecuencia de 800 MHz bus de 200MHz transferencia máxima de 6.4 GB/s.DDR3 – 800 (2004) frecuencia de 800 MHz bus de 100MHz transferencia 6.4 GB/s.DDR3 – 1066 (2007) frecuencia de 1066MHz bus de 133MHz transferencia 8.53 GB/s.DDR3 – 1333( 2007) velocidades de transferencia de 10.667 GB/s bus 1333 MHzDDR3 – 1600( 2007) Transferencia 12.80 GB/s bus 1600 MHzDDR3 – 1800 (Agosto de 2007) 14.40 GB/s @ 1800 MHz
  7. 7. DDR3 – 2000( Marzo de 2008) transferencia16.0 GB/s @ 2000 M






DISCO DURO
Resultado de imagen para imagen de un disco duro
Evolución de Disco Duro
IBM RAMAC35                                                                                                                                                                                                                                                                                   En 1957, se introdujo como un componente de IBM RAMAC la primera unidad de discos duro350.  Requirió 50 discos de 24 pulgadas para guardar cinco megabytes (millón bytes, se abrevió MB) de datos y costó bruscamente US$35.000 por año o arrendarlo a US$7.000 por megabyte anual. fue el primer ordenador comercial que utilizaba disco duro de cabeza móvil (unidad de disco magnético) como almacenamiento secundario. IBM lo lanzó el 4 de septiembre de 1956. RAMAC eran las iniciales en inglés de "Sistema de Contabilidad con Memoria de Acceso Aleatorio" ("Random Access Memory  ACcounting  System Su diseño estuvo motivado por la necesidad de sustituir el fichero de tarjetas perforadas utilizado por la mayoría de las oficinas de la época. El primer RAMAC destinado a ser usado en la industria del automóvil estadounidense fue instalado en la Chrysler's  MOPAR División en 1957. Sustituyó a un gigantesco fichero que era parte del sistema de procesamiento para el control de inventario y pedidos de piezas de MOPAR. El 305 fue uno de los últimos ordenadores de tubo de vacío construídos por IBM.
El sistema de disco IBM 350 almacenaba cinco millones de caracteres de siete bits (aproximadamente 4,2 MiB). Tenía cincuenta discos de veinticuatro pulgadas de diámetro. Dos brazos independientes se desplazaban verticalmente seleccionar un disco y horizontalmente para seleccionar una pista de grabación, todo para control de servomecanismos. El tiempo medio de posicionamiento en un registro era de seiscientos milisegundos. En la década de 1950 se añadieron varios modelos mejorados. El ordenador IBM RAMAC 305 con almacenamiento en disco 350 tenía un coste en "leasing" de 3.200 dólares mensuales en dólares de 1957, equivalente a un precio de compra de unos 160.000 dólares. Se construyeron más de 1.000 unidades. La producción terminó en 1961, el RAMAC pasa ser obsoleto en 1962 con el lanzamiento del IBM 1401 y retirado del mercado en 1969.
El modelo 1301

1962
IBM introdujo un nuevo modelo, el 1301, con una capacidad de 28 MB y una velocidad de transferencia y una densidad de área 10 veces mayor que el RAMAC 305. La distancia entre los cabezales y la superficie del disco había descendido desde 20,32 µm a 6,35 µm.
A partir del año 1962, muchos fabricantes comenzaron a vender discos duros como el 1301. La Unidad de almacenamiento en disco de IBM, con su mayor capacidad, flexibilidad y velocidad, hemos ampliado la capacidad operativa de la serie 7000 de los ordenadores de IBM (7070, 7094, 7080 y 7090). El 1301 aumentó el rendimiento de los sistemas grandes para muchos tipos de empleos, y con su organización única de datos, el 1301 contribuyó de manera significativa a la vez que 7000 servidores en realidad podría calcular.
Utilizado en combinación con la serie 7000, el 1301 había muchos de los mismos y las características físicas generales de funcionamiento como cuando se utiliza con el IBM 1410 Data Processing System. Estas características incluyen: el concepto del cilindro (verticalmente alineados de lectura / escritura cabezas, una a una superficie del disco, para proporcionar la lectura y escritura de información en temas relacionados con el disco correspondiente y para eliminar la necesidad de acceso para el movimiento vertical); longitud de registro flexibles (diferentes registros de longitud podría ser almacenados en el archivo, aumentando enormemente la capacidad de almacenamiento real); y selectiva frente (números de registro fueron asignados por el usuario para una mayor eficacia en muchos puestos de trabajo, las direcciones no tienen que ser consecutivos, secuencial o numérico).
El 1301 de los discos giran a 1.800 rpm. El 1301 proporcionó el 50 pistas por pulgada y grabación de hasta 520 bits por pulgada de pista (gracias a una reducción media en la cabeza-a-distancia de la superficie de 800 a 250 micro pulgadas). Como resultado, la capacidad de almacenamiento por pulgada cuadrada de la superficie se incrementó 13 veces más de lo que había sido con la tecnología de IBM RAMAC de 1956.
El modelo 2310
1965
En 1965, IBM lanzó el modelo 2310, cuya notable característica era ser un elemento de almacenamiento desmontable (el primer disco flexible). En abril de 1967, IBM anunció una expansión de cuatro modos de sistema de 1130. Nuevas características para el escritorio de computadora del tamaño de IBM más pequeño a la vez, incluyó la capacidad de leer la información de cinco discos magnéticos al mismo tiempo. Anteriormente, sólo un equipo autónomo de disco (primer plano) estaba disponible. Sin embargo, en 1967, hasta cuatro discos adicionales (a la derecha, parte trasera) se podría agregar. Cada uno puede almacenar hasta un millón de caracteres de información.
El 2314
1966
El 2314, lanzado en 1966, tenía cabezales de lectura de ferrita (óxido de hierro).
Anunció un año después de la System /360 en abril de 1965, el IBM 2314 proporcionó ocho unidades de disco y una de repuesto, junto con una unidad de control en una misma instalación. Un paquete nuevo disco con 11 discos duplicó el número de superficies de almacenamiento de más de los disponibles en el paquete de la primera de disco extraíble. La densidad de grabación el incremento de la capacidad de almacenamiento de 29,2 millones de bytes por paquete o 233 millones de bytes en las ocho instalaciones de carga. El tiempo de acceso y la latencia de la 2314 era la misma que la de más edad de IBM 2311, pero el 2314 ofrece el doble de la velocidad de datos de 310.000 bytes por segundo. El 2314 también fue interesante porque era cuatro veces menor en el precio por megabyte de almacenamiento.
Winchester 3340

1973
En 1973, IBM lanzó el Winchester 3340, un disco duro cuyo cabezal de lectura estaba separado de la superficie a través de una fina capa de aire de tan sólo 0,43 µm de espesor. Mejoró su capacidad en comparación con aquella del RAMAC, como también su tamaño y peso, lo cual hizo que este disco se convirtiera el nuevo estándar de los dispositivos de almacenamiento de acceso directo. Al disco duro de 30 MB de capacidad se le dio el apodo de 30-30, y así se convirtió en el "Winchester" (como el famoso rifle 30-30). Tras un esfuerzo de desarrollo que comenzó en el verano de 1969, la unidad de disco IBM 3340 fue presentado en marzo de 1973, con una tecnología avanzada de disco conocido como "Winchester". * Los primeros 3.340 envíos a los clientes se inició en noviembre de 1973.
El 3340 aparece una más pequeña, más ligera lectura / escritura de la cabeza que podía montar más cerca de la superficie del disco - en una película de ambiente 18 millonésimas de pulgada de grosor - con una carga de menos de 20 gramos. Baja el archivo de disco Winchester cabeza de estructura de costes deslizante, hizo posible el uso de dos cabezas por superficie, reducción de la longitud de la carrera a la mitad. Los discos, el eje del disco y rodamientos, el transporte y la cabeza asambleas brazo se incorporaron en un cartucho sellado, desmontable, llamado 3348 de IBM Data Module. Una densidad de pista de 300 pistas por pulgada y un tiempo de acceso de 25 milisegundos se han alcanzado.
El 3340 ofrece la disponibilidad de los jefes fija opcional, que proporcionan un tiempo de acceso promedio de sólo cinco milisegundos. Había tres tipos de módulos de datos: 35 megabytes, 70 megabytes, y 70 megabytes de los cuales 0,5 megabytes eran accesibles con la cabeza fija.
Dos a cuatro unidades de 3340 podrían estar vinculadas a la modelo de procesador IBM System/370 115 - que había sido anunciada simultáneamente con el 3340 - proporcionando una capacidad de almacenamiento de hasta 280 millones de bytes
Seagate
1980
El primer disco duro de 5,25" (cinco-coma-veinticinco pulgadas), desarrollado por la compañía Seagate, se lanzó en 1980.La revolución de la computadora personal a comienzos de 1980 cambió todo, es la introducción de los primeros discos duros pequeños. Eran discos de 5.25 pulgadas los que manejaban de 5 a 10 MB de almacenamiento- el equivalente de 2.500 a 5.000 páginas de tecleo de información- en un aparato del tamaño de la caja de un zapato pequeño. Al tiempo se consideró que una capacidad de almacenamiento de 10 MB era demasiado grande para una llamada computadora "personal". Los primeros PCS usaron discos flexibles trasladables como aparatos de almacenamiento casi exclusivamente. El término "disco blando" con precisión se refiere a los primeros discos para PC de 8 y 5.25 pulgadas que tuvieron éxito. Los discos internos de hoy, más pequeños, se construyen 3.5 pulgadas de forma similar a los anteriores, pero se albergan en un casco de plástico rígido, que es más durable que el techado flexible
de los discos más grande
MFM
Años más tarde, se inventó el primer disco duro para ordenadores personales. Usando el método de codificación de MFM, tenía una capacidad de 40MB y una velocidad de transferencia de datos de 625 Kbps. Una versión posterior del interfaz ST506 trasladó al método de codificación de RLL, facilitando una aumentada capacidad de almacenaje y velocidad de procesamiento. Las unidades de disco utilizado por el modelo I, II, III, 4, 4D, 4P, 16, 12, 16B, 16BHD, 6000 y 6000HD son principalmente ST506 unidades de tipo. El ST506 Seagate es un disco que tenía una interfaz de MFM (Modified Frequency Modulation) que se ha repetido en docenas de unidades diferentes a lo largo de los años. Con el tiempo, que la interfaz ha tomado el nombre de la unidad ST506 original. La unidad ST506 es una unidad de capacidad muy baja para los estándares de hoy pero la interfaz había suficiente flexibilidad para permitir un mayor crecimiento. (La interfaz ST506 también fue llamada la "S" interface por algunos fabricantes por un tiempo que no quería hablar de la ST506, un modelo de unidad competitiors, pero la "S" nombre ya no era utilizado por la década de 1980. En esa la fecha, las unidades IDE SCSI y había comenzado a apoderarse del mercado de almacenamiento.
Discos para computadoras de escritorio
Por 1987 unidades de discos duros de 3.5 pulgadas empezaron a aparecer. Éstas unidades pequeñas pesan como una libra y son del tamaño de una agenda. Estos fueron integrados dentro de computadores de escritorio y más tarde se incorporaron a los primeros en de verdad llamados computadoras portátiles (laptops) -peso promedio bajo 12 libras. La unidad de 3.5 pulgadas rápidamente volvió a ser la norma para los computadores de escritorio y sistemas portátiles que requerían menos que 500 MB capacidad. Altura también se encoge con la introducción del disco de 1 pulgada de alto, dispositivos de 'bajo perfil'.
Así como la forma de 3.5 pulgadas ganaba aceptación, todavía una forma más pequeña, de 2,5 
pulgadas, poco a poco apareció en la escena. No sorprende que la marcha a la miniaturización no se detuvo con 2.5 pulgadas. 
                                                                                                Surgimiento de varios modelos
Alrededor de 1992 varios modelos 1.8 pulgadas aparecieron, peso sólo unas onzas y entrega capacidades de hasta 40 MB. Igualmente aparecieron con formato de 1.3 pulgadas, del tamaño de una fosforera. Factores de forma más pequeños por supuesto, no eran necesariamente mejor que los más grandes.
Desde su introducción, el disco duro se ha vuelto la forma más común de almacenamiento en masa para computadoras personales. Fabricantes han hecho grandes avances en capacidad, tamaño y ejecución. Hoy, el formato de 3.5 pulgadas, es capaz de manejar y acceder a millones de datos (gigabyte GB) mientras el computador esta accediendo a las aplicaciones multimedia, gráficos de alta calidad, gestión de redes, y aplicaciones de las comunicaciones. Y, según el tamaño maneja no sólo el equivalente de cientos de miles de páginas de información, sino que también recupera un dato o artículo determinado en sólo unas milésimas de segundo. Aún más, con el transcurrir del tiempo cada vez es más barato la unidad de disco.
Almacenamiento masivo
1995-1999
El disco duro más pequeño que puede encontrarse en ésta época es el de 4 GB, mientras que el más grande es de 15 GB. Podría decirse que los discos duros de cualquier tamaño, permiten instalar Windows, Office y un programa de contabilidad, y aún sobrará capacidad para, digamos, unas 50.000 cartas y varios millones de apuntes bancarios.
Un caso distinto es el del usuario doméstico; en teoría, apenas necesitaría un poco más de capacidad que el usuario ofimático,
En cuanto a los profesionales del CAD o la edición de vídeo, la capacidad que siguen necesitando sigue siendo bastante elevada, aunque en este caso el tamaño no debe ser una obsesión; sencillamente, en estas aplicaciones el disco duro es sólo una herramienta de trabajo, nunca de archivo. Para eso están los magneto-ópticos, el Jaz o las omnipresentes grabadoras de CD.
MK4058GSX
2000
Lanzado por Toshiba. De 400 GB. Consecución de una densidad superficial de almacenamiento de 477Mbit/mm2 (308Gbspi). El MK4058GSX logra una densidad superficial de almacenamiento de 477Mbit/mm2 como resultado de mejorar la cabeza de lectura/escritura y la capa magnética. Con el mismo diseño de dos platos que el diseño actual del disco de 320GB de Toshiba, el nuevo modelo ofrece una capacidad de 400GB, la mayor capacidad obtenida hasta la fecha, mientras conserva el espesor de 9,5 mm de su antecesor.
2. 2dB de reducción en el ruido acústico durante la búsqueda de datos.
Toshiba ha concentrado sus más recientes avances en la tecnología de discos duros para reducir el ruido en 2dB, suprimiéndolo a un nivel en el cual los usuarios pueden reproducir películas y música sin ninguna distracción ocasionada por el ruido durante la búsqueda de datos.
3. Mejora en la eficiencia del consumo de energía.
Comparado con el MK3252GSX de 320GB, el nuevo MK4058GSX mejora la eficiencia en el consumo de energía, según se define en el estándar legal japonés, a 0,0015W/GB, una mejora del 20%
SSD25D 2,5 (De Estado Solido)
2009
Este nuevo dispositivo -SSD25D asegura una alta velocidad de transmisión de datos. Transcend Information anuncia el lanzamiento de su último disco duro en estado sólido ultra rápido SATA II de 2,5’’, equipado con 64 MB de memoria caché DRAM. Ofrece una velocidad de transferencia de datos, de más de 230M/s en lectura y de 180MB/s en escritura, garantizando así rapidez en el rendimiento, sin importar el tamaño o el tipo del archivo que se quiera transmitir.

Construido con memoria NAND flash, que no contiene partes móviles, SSD25D es altamente resistente, y silencioso; además, este dispositivo es prácticamente inmune a problemas mecánicos por exceso de vibración, golpes o calor. Para mayor seguridad, SSD25D integra el código ECC (Error Correction Code), que asegura una transmisión de datos precisa.
La Cie Bigger Disk Extreme
marca un antes y un después en cuanto al almacenamiento de datos. Ningún otro es capaz de guardar tantos contenidos: más de 625.000 canciones en MP3, 1,3 millones de fotos o hasta 425 películas en calidad DVD.
Esta impresionante capacidad de 2.000 GB, impensable hasta la fecha, convierte al Bigger Disk Extreme en el disco duro perfecto para cualquier empresa. Tan útil para hacer copias de seguridad como para almacenar bases de datos, es además el compañero perfecto de los editores de vídeo. Unos profesionales que manejan toneladas de imágenes y que necesitan una gran velocidad de transferencia de datos.

Potente y rápida, esta gran revolución del almacenamiento cuenta con triple interfaz USB 2.0, FireWire 400 y FireWire 800. Ofrece una velocidad de transferencia un 50% más alta que el resto de las unidades FireWire 800. En concreto, Bigger Disk Extreme alcanza los 85 megabytes por segundo.
A pesar de ser el disco más grande del mundo en cuanto a capacidad, Bigger Disk Extreme ocupa sólo 8,8 cm. de alto x 27 cm. de largo y 17,3 cm de ancho. Gracias a su diseño exclusivo y compacto se puede apilar o poner en vertical sobre una base para ahorrar espacio en el escritorio. Además, el equipo incluye un cómodo ventilador inteligente que protege el disco contra el exceso de calor sin hacer apenas ruido.
Resultado de imagen para linea del tiempo de la evolucion disco duro

EL DISCO BLU-RAY
tiene 12 cm de diámetro, igual que el CD y el DVD. Guardaba 25 GB por capa, por lo que Sony y Panasonichan desarrollado un nuevo índice de evaluación (i-MLSE) que permitiría ampliar un 33 % la cantidad de datos almacenados,1​ desde 25 a 33,4 GB por capa.23
Funcionamiento]
El disco Blu-ray hace uso de un rayo láser de color azul con una longitud de onda de 405 nanómetros, a diferencia del láser rojo utilizado en lectores de DVD, que tiene una longitud de onda de 650 nanómetros. Esto, junto con otros avances tecnológicos, permite almacenar sustancialmente más información que el DVD en un disco de las mismas dimensiones y aspecto externo.45​ Blu-ray obtiene su nombre del color azul del rayo láser (blue ray significa ‘rayo azul’). La letra e de la palabra original blue fue eliminada debido a que, en algunos países, no se puede registrar para un nombre comercial una palabra común.23
Historia

El DVD ofreció en su momento una alta calidad, ya que era capaz de dar una resolución de 720x480 (NTSC) o 720x576 (PAL), lo que es ampliamente superado por la capacidad de alta definición ofrecida por el Blu-ray, que es de 1920x1080 (1080p). Este último es el formato utilizado por los estudios, para archivar sus producciones, que anteriormente se convertía al formato que se quisiese exportar. Esto ya no será necesario, con lo que la industria del cine digital no tendrá que invertir esfuerzo y tiempo en el cambio de resolución de películas, lo que abaratará en menor medida y reducción de costos.

 

6Lector de tarjetas de memoria


Lector de tarjetas de memoria moderno típico, compatible con muchos formatos comunes.
Un lector de tarjetas de memoria es un dispositivo de almacenamiento de datos para acceder (leer) los datos en una tarjeta de memoria, como por ejemplo: CompactFlash (CF), Secure Digital (SD) o MultiMediaCard (MMC). Es un periférico de entrada.
La mayoría de los lectores de tarjetas también ofrecen capacidad de escritura, y junto con la tarjeta, esto puede funcionar como un memoria USB o pendrive.
Algunas impresoras y computadoras personales tienen un lector de tarjetas incorporado.
Un lector de tarjetas múltiple se utiliza para la comunicación con más de un tipo de de tarjeta de memoria flash. Los multi-lectores de tarjetas no se han incorporado en la capacidad de memoria, pero son capaces de aceptar varios tipos y estilos de las tarjetas de memoria.
El número de tarjetas de memoria compatibles varía de lector a lector y puede incluir más de veinte tipos diferentes. La cantidad de tarjetas de memoria diferentes que un multi-lector de tarjetas puede aceptar se expresa como "x-en-1", siendo "x" una figura de mérito que indica la cantidad de tipos de tarjetas de memoria aceptadas (por ejemplo: "5-en-1").
Hay tres categorías de lectores de tarjetas, según el tipo y la cantidad de las ranuras para tarjetas:
1.   Lector de tarjetas único (por ejemplo 1x SD-solamente),
2.   Lector de tarjetas multi (por ejemplo, 9-en-1) y
3.   Lector de tarjetas en serie (por ejemplo 4x SD solamente).
Algunos tipos de tarjetas de memoria con sus propias funciones de USB no necesitan el lector de tarjetas, como la tarjeta de memoria Intelligent Stick, que se puede conectar directamente a un puerto USB. La clase de dispositivo USB que utiliza es 0x08.
El moderno UDMA-7, las tarjetas CompactFlash y UHS-I Secure Digital ofrecen velocidades de datos de más de 89 MBytes/seg y hasta 145 MBytes/seg,1​ que requieren lectores de tarjetas de memoria capaces de velocidades de transferencia de datos USB 3.0.2

La memoria USB (Universal Serial Bus) denominado también lápiz de memorialápiz USBmemoria externapen drive o pendrive es un tipo de dispositivo de almacenamiento de datos que utiliza memoria flash para guardar datos e información.1Primera generación

Las empresas Trek Technology e IBM comenzaron a vender las primeras unidades de memoria USB en el año 2000. Trek vendió un modelo bajo el nombre comercial de Thumbdrive e IBM vendió las primeras unidades en Norteamérica bajo la marca DiskOnKey, desarrolladas y fabricadas por la empresa israelí M-Systems en capacidades de 8 MB, 16 MB, 32 MB y 64 MB. Estos fueron promocionados como los «verdaderos reemplazos del disquete», y su diseño continuó hasta los 256 mis. Los modelos anteriores de este dispositivo utilizaban copias de baterías, en vez de la alimentación de la PC.2

Segunda generación

Dentro de esta generación de dispositivos existe conectividad con la norma USB 2.0. Sin embargo, no usan en su totalidad la tasa de transferencia de 480 Mbit/s que soporta la especificación USB 2.0 Hi-Speed debido a las limitaciones técnicas de las memorias flash basadas en NAND. Los dispositivos más rápidos de esta generación usan un controlador de doble canal, aunque todavía están muy lejos de la tasa de transferencia posible de un disco duro de la actual generación, o el máximo rendimiento de alta velocidad USB.
Las velocidades de transferencia de archivos varían considerablemente. Se afirma que las unidades rápidas típicas pueden leer a velocidades de hasta 480 Mbit/s y escribir a cerca de la mitad de esa velocidad. Esto es aproximadamente 20 veces más rápido que en los dispositivos USB 1.1, que poseen una velocidad máxima de 24 Mbit/s.

Tercera generación

La norma USB 3.0 ofrece tasas de cambio de datos mejoradas enormemente en comparación con su predecesor, además de compatibilidad con los puertos USB 2.0. La norma USB 3.0 fue anunciada a finales de 2009, pero los dispositivos de consumo no estuvieron disponibles hasta principios de 2010. La interfaz USB 3.0 dispone las tasas de transferencia de hasta 4,8 Gbit/s, en comparación con los 480 Mbit/s de USB 2.0. A pesar de que la interfaz USB 3.0 permite velocidades de datos muy altas de transferencia, a partir de 2011 la mayoría de las unidades USB 3.0 Flash no utilizan toda la velocidad de la interfaz USB 3.0 debido a las limitaciones de sus controladores de memoria, aunque algunos controladores de canal de memoria llegan al mercado para resolver este problema. Algunas de estas memorias almacenan hasta 256 GiB de memoria (lo cual es 1024 veces mayor al diseño inicial de M-Systems). También hay dispositivos, que aparte de su función habitual, poseen una Memoria USB como aditamento incluido, como algunos ratones ópticos inalámbricos o Memorias USB con aditamento para reconocer otros tipos de memorias (microSDm2, etc.).
En agosto de 2010, Imation anuncia el lanzamiento al mercado de la nueva línea de USB de seguridad Flash Drive Defender F200, con capacidades de 1 GiB, 2 GiB, 4 GiB, 8 GiB, 16 GiB y 32 GiB. Estas unidades de almacenamiento cuentan con un sensor biométrico ergonómico basado en un hardware que corrobora las coincidencias de las huellas dactilares de identificación, antes de permitir el acceso a la información.


Comentarios

Entradas populares